
CHAPTER 6

Directed systems and Craig interpolation

In this chapter we will introduce a method for creating new models from old ones: colimits
of directed systems. We will then use this method to prove a fundamental property of first-order
logic: the Craig Interpolation Theorem.

1. Directed systems

Definition 6.1. A partially ordered set (K,≤) is called directed, if K is non-empty and
for any two elements x, y ∈ K there is an element z ∈ K such that x ≤ z and y ≤ z.

Note that non-empty linear orders (aka chains) are always directed.

Definition 6.2. A directed system of L-structures consists of a family (Mk)k∈K of L-
structures indexed by a directed partial order K, together with homomorphisms fkl:Mk →Ml

for k ≤ l, satisfying:

• fkk is the identity homomorphism on Mk,
• if k ≤ l ≤ m, then fkm = flmfkl.

If K is a chain, we call (Mk)k∈K a chain of L-structures

If we have a directed system, then we can construct its colimit, another L-structure M with
homomorphisms fk:Mk → M . To construct the underlying set of the model M , we first take
the disjoint union of all the universes:∑

k∈K

Mk = {(k, a) : k ∈ K, a ∈Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l, b):⇔ (∃m ≥ k, l) fkm(a) = flm(b).

The underlying set of M will be the set of equivalence classes, where we denote the equivalence
class of (k, a) by [k, a].

M has an L-structure: if c is some constant symbol, then we put

cM = [k0, c
Mk0 ],

where k0 is some arbitrary element from K. If R is a relation symbol in L, we put

RM ([k1, a1], . . . , [kn, an])

if there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .
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And if g is a function symbol in L, we put

gM ([k1, a1], . . . , [kn, an]) = [k, gMk(fk1k(a1), . . . , fknk(an))],

where k is an element ≥ k1, . . . , kn. In addition, the homomorphisms fk:Mk →M are obtained
by sending a to [k, a]. Please convince yourself that this all makes sense!

The following theorem collects the most important facts about colimits of directed systems.
Especially useful is part 5, often called the elementary systems lemma.

Theorem 6.3. (1) All fk are homomorphisms.
(2) If k ≤ l, then flfkl = fk.
(3) If N is another L-structure for which there are homomorphisms gk:Mk → N such

that glfkl = gk whenever k ≤ l, then there is a unique homomorphisms g:M → N
such that gfk = gk for all k ∈ K (this is the universal property of the colimit).

(4) If all maps fkl are embeddings, then so are all fk.
(5) If all maps fkl are elementary embeddings, then so are all fk.

Proof. We just give the proof of point (5). We have to show

Mk |= ϕ(mk
1 , . . . ,m

k
n)⇔M |= ϕ(fk(mk

1), . . . , fk(mk
n))

for all formulas ϕ and elements mk
1 , . . . ,m

k
n ∈ Mk. We prove the statement by induction on

the structure of ϕ and to make our lives easier we assume that ϕ only contains the logical
operations ∧,¬,∃. The case of the atomic formulas is point (4), and the induction step for ∧
and ¬ is trivial. So the only interesting implication we need to show is

M |= ∃xϕ(x, fk(mk
1), . . . , fk(mk

n))⇒Mk |= ∃xϕ(x,mk
1 , . . . ,m

k
n),

because the other direction is immediate from the induction hypothesis.

If M |= ∃xϕ(x, fk(mk
1), . . . , fk(mk

n)), then there is some element [l,m] ∈M such that

M |= ϕ([l,m], fk(mk
1), . . . , fk(mk

n)).

Since K is directed we may assume that l ≥ k. But then fk = flfkl and the induction hypothesis
applied to ϕ and fl yields:

Ml |= ϕ(m, fkl(m
k
1), . . . , fkl(m

k
n)).

So Ml |= ∃xϕ(x, fkl(m
k
1), . . . , fkl(m

k
n)) and because fkl is assumed to be an elementary embed-

ding, we obtain

Mk |= ∃xϕ(x,mk
1 , . . . ,m

k
n),

as desired. �

The following fact about colimits of directed systems is also very useful:

Lemma 6.4. Let (K,≤) be a directed poset and (Mk)k∈K be a directed system. If J is a
cofinal subset of K (meaning that for each k ∈ K there is a j ∈ J such that k ≤ j), then
(Mj)j∈J is a directed system as well and the colimits of the directed systems (Mk)k∈K and
(Mj)j∈J are isomorphic.
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2. Robinson’s Consistency Theorem

The aim of this section is to prove the statement:

(Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1 ∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend
a complete L-theory T . If both T1 and T2 are consistent, then so is T1 ∪ T2.

We first need two lemmas.

Lemma 6.5. Let L ⊆ L′ be languages and suppose A is an L-structure and B is an L′-
structure. Suppose moreover A ≡ B � L. Then there is an L′-structure C and a diagram of
elementary embeddings (f in L and f ′ in L′)

A

f   

B

f ′
~~

C.

Proof. Consider T = ElDiagL(A) ∪ElDiagL′
(B) (making sure we use different constants

for the elements from A and B!). We need to show T has a model; so suppose T is inconsistent.
Then, by compactness, a finite subset of T has no model; taking conjunctions, we have sentences
ϕ(a) ∈ ElDiag(A) and ψ(b) ∈ ElDiag(B) that are contradictory. But as the aj do not occur in
L′
B , we must have that B |= ¬∃xϕ(x). This contradicts A ≡ B � L. �

Lemma 6.6. Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an L′-
structure. Any pair of L-elementary embeddings f :A→ B and g:A→ C fit into a commuting
square

A
g

  

f

~~

B

h
  

C

k
~~

D

where D is an L′-structure, h is an L-elementary embedding and k is an L′-elementary embed-
ding.

Proof. Without loss of generality we may assume that L contains constants for all ele-
ments of A. Then simply apply Lemma 6.5. �

Theorem 6.7. (Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend a complete L-theory
T . If both T1 and T2 are consistent, then so is T1 ∪ T2.
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Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is complete, the reducts
of A0 and B0 to L are elementary equivalent, so, by the first lemma, there is a diagram

A0

f0

  

B0
h0

// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding. Now by applying
the second lemma to f0 and the identity on A0, we obtain

A0

f0   

k0 // A1

B0
h0

// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way we obtain a diagram

A0

f0   

k0 // A1

f1

  

k1 // A2
// . . .

B0
h0

// B1

g0

OO

h1

// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi are L2-elementary.
By Lemma 6.4, the colimit C of this directed system is both the colimit of the Ai and of the
Bi. So A0 and B0 both embed elementarily into C by the elementary systems lemma; hence C
is a model of both T1 and T2, as desired. �

3. Craig interpolation

Theorem 6.8. (Craig Interpolation Theorem) Let ϕ and ψ be sentences in some language
such that ϕ |= ψ. Then there is a sentence θ, a “(Craig) interpolant”, such that

(1) ϕ |= θ and θ |= ψ;
(2) every predicate, function or constant symbol that occurs in θ occurs also in both ϕ and

ψ.

Proof. Let L be the common language of ϕ and ψ. We will show that T0 |= ψ where
T0 = {σ : σ is an L-sentence and ϕ |= σ}. Let us first check that this suffices for proving the
theorem: for then there are θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by compactness. So
θ: = θ1 ∧ . . . ∧ θn is an interpolant.

So we need to prove the following claim: If ϕ |= ψ, then T0 |= ψ where T0 = {σ ∈ L : ϕ |= σ}
and L is the common language of ϕ and ψ. Proof of claim: Suppose not. Then T0 ∪ {¬ψ} has
a model A. Write T = ThL(A). Observe that we now have T0 ⊆ T and:

(1) T is a complete L-theory.
(2) T ∪ {¬ψ} is consistent (because A is a model).
(3) T ∪{ϕ} is consistent. (Proof: Suppose not. Then, by the compactness theorem, there

would a sentence σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)
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This means we can apply Robinson’s Consistency Theorem to deduce that T ∪ {¬ψ,ϕ} is
consistent. But that contradicts ϕ |= ψ. �

4. Exercises

Exercise 1. The aim of this exercise is to prove the Chang- Loś-Suszko Theorem. To state
it we need a few definitions.

A ∀∃-sentence is a sentence which consists first of a sequence of universal quantifiers, then
a sequence of existential quantifiers and then a quantifier-free formula. A theory T can be
axiomatised by ∀∃-sentences if there is a set T ′ of ∀∃-sentences such that T and T ′ have the
same models.

In addition, we will say that a theory T is preserved by directed unions if for any directed
system consisting of models of T and embeddings between them, also the colimit is a model T .
And T is preserved by unions of chains if for any chain of models of T and embeddings between
them, also the colimit is a model of T .

Show that the following statements are equivalent:

(1) T is preserved by directed unions.
(2) T is preserved by unions of chains.
(3) T can be axiomatised by ∀∃-sentences.

Hint: To show (2) ⇒ (3), suppose T is preserved by unions of chains and let

T∀∃ = {ϕ : ϕ is a ∀∃-sentence and T |= ϕ}.

Then prove that starting from any model B of T∀∃ one can construct a chain of embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .

such that:

(1) Each An is a model of T .
(2) The composed embeddings Bn → Bn+1 are elementary.
(3) Every universal sentence in the language LBn

true in Bn is also true in An (when
regarding An is an LBn

-structure via the embedding Bn → An).

Exercise 2. Use Robinson’s Consistency Theorem to prove the following Amalgamation
Theorem: Let L1, L2 be languages and L = L1 ∩ L2, and suppose A,B and C are structures
in the languages L, L1 and L2, respectively. Any pair of L-elementary embeddings f :A → B
and g:A→ C fit into a commuting square

A
g

  

f

~~

B

h
  

C

k
~~

D

where D is an L1 ∪ L2-structure, h is an L1-elementary embedding and k is an L2-elementary
embedding.



6 6. DIRECTED SYSTEMS AND CRAIG INTERPOLATION

Exercise 3. Derive Robinson’s Consistency Theorem from the Craig Interpolation Theo-
rem.

Exercise 4. The aim of this exercise is to prove Beth’s Definability Theorem.

Let L be a language a P be a predicate symbol not in L, and let T be an L ∪ {P}-theory.
T defines P implicitly if any L-structure M has at most one expansion to an L∪{P}-structure
which models T . There is another way of saying this: let T ′ be the theory T with all occurrences
of P replaced by P ′, another predicate symbol not in L. Then T defines P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn
(
P (x1, . . . , xn)↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn
(
P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)

)
.

Show that T defines P implicitly if and only if T defines P explicitly.


